
Calculus 1

Final Exam – Solutions
November 3, 2022 (8:30 – 10:30)

1) Apply l’Hospital’s Rule to find the limit lim
x→0+

sin x ln x. Indicate the results (e.g. continuity, differen-

tiation rules, limit laws) used in each step.

Solution. The limit is an indeterminate form of type “0 · (−∞)” since sin 0 = 0 and lim
x→0+

ln x = −∞.

Thus we cannot directly apply l’Hospital’s Rule. Notice however that moving sin x to the denominator by
writing

sin x ln x =
lnx
1

sinx

,

the expression is now an indeterminate form of “0/0”. We note that we are allowed to do this because
when x is around (but not equal to) 0, we have sin x 6= 0 and 1/ sin x exists. Let us now use l’Hospital’s
Rule:

lim
x→0+

ln x
1

sinx

l’H
= lim

x→0+

1
x

− cos x
sin2 x

= lim
x→0+

(

−sin x

x

sin x

cosx

)

= − lim
x→0+

sin x

x
lim
x→0+

sin x

cosx
= −1 · sin 0

cos 0
= 0.

Above we used the Chain Rule, the derivatives (ln x)′ = 1/x, (sin x)′ = cosx, and the Generalized Power
Rule (x−1)′ = −x−2. For the equality in the middle, we used the Constant Multiple and Product Laws of
Limits as well as the special trigonometric limit sinx

x
→ 1 as x → 0. The second to last equality follows

from the continuity of the sine and cosine functions and the Quotient Law of Limits. Finally, we used that
sin 0 = 0 and cos 0 = 1 6= 0. Therefore we have found that

lim
x→0+

sin x ln x = 0.

2) Consider the function V (x) = ax−2 − bx−1, where x > 0 and a, b are positive constants. Compute
the 2nd-degree Taylor polynomial for V centred around the point where it attains its minimum.

Solution. To locate the minimum of V we need to determine its critical numbers. The derivative of
V (x) vanishes at x = 2a/b:

V ′(x) = −2ax−3 + bx−2 = 0
×x3

−−⇀↽−−
÷x3

−2a + bx = 0
+2a,÷b−−−−⇀↽−−−−
×b,−2a

x =
2a

b
.

This is the only critical number for x > 0 (the domain of V ). Here the second derivative of V (x) attains
a positive value:

V ′′(x) = 6ax−4 − 2bx−3 x=2a/b
====⇒ V ′′

(

2a

b

)

= 6a
b4

(2a)4
− 2b

b3

(2a)3
=

3

8

b4

a3
− 1

4

b4

a3
=

1

8

b4

a3
> 0.

The Second Derivative Test implies that V has a local minimum at x = 2a/b with the minimum value

V

(

2a

b

)

= a
b2

(2a)2
− b

b

2a
=

1

4

b2

a
− 1

2

b2

a
= −1

4

b2

a
.

Let us call this value Vmin. Note that Vmin is negative. Moreover, the potential has the limiting behaviour:

lim
x→0+

[xV (x)] = a lim
x→0+

1

x
− b = ∞ ⇒ lim

x→0+
V (x) = ∞ > Vmin,

and

lim
x→∞

V (x) = a lim
x→∞

1

x2
− b lim

x→∞

1

x
= a · 0− b · 0 = 0 > Vmin.
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Both being greater than Vmin, we can conclude that Vmin is the absolute minimum of the potential.
The quadratic Taylor polynomial of V centred around x = 2a/b is

T2(x) = V

(

2a

b

)

+ V ′

(

2a

b

)(

x− 2a

b

)

+
1

2
V ′′

(

2a

b

)(

x− 2a

b

)2

= −1

4

b2

a
+ 0

(

x− 2a

b

)

+
1

2

1

8

b4

a3

(

x− 2a

b

)2

=
b4

16a3
x2 − b3

4a2
x.

3) The centroid (point of balance) of a line segment is at its midpoint. The centroid of multiple line
segments is obtained by taking the length-weighted average of centroids. Derive an integral formula for
the coordinates (x̄, ȳ) of the centroid of a curve y = f(x), a ≤ x ≤ b and use it to compute the centroid
of the upper-semicircle of radius R centred at the origin.
[You may assume that f(x) has a continuous derivative over [a, b].]

Solution. Take an arbitrary positive integer n and divide the interval [a, b] into n subintervals [xi−1, xi]
of equal length using the points x0 := a, xi := a + i∆x, where ∆x := (b − a)/n > 0 and i = 1, . . . , n.
Thus we have

a = x0 < x1 < · · · < xn−1 < xn = b.

Introduce the notation y0 := f(a), yi := f(xi) and ∆xi := xi−xi−1, ∆yi := yi−yi−1 for all i = 1, . . . , n.
Next, we create a broken line approximation to the curve y = f(x) by connecting the points (x0, y0) →
(x1, y1) → · · · → (xn, yn). Let ℓi denote the length of the i-th line segment. The Pythagorean Theorem
implies that

ℓi =
√

(∆xi)2 + (∆yi)2.

Clearly, we have ∆xi = ∆x and ∆yi = f(xi)− f(xi−1) so we can factor out ∆x and write

ℓi =

√

1 +

[

f(xi)− f(xi−1)

xi − xi−1

]2

∆x.

The Mean Value Theorem guarantees the existence of a point x∗
i ∈ (xi−1, xi) s.t. f

′(x∗
i ) =

f(xi)−f(xi−1)
xi−xi−1

,

hence

ℓi =

√

1 + [f ′(x∗
i )]

2∆x.

The centroid of the i-th line segment is located at its midpoint, i.e.

(x̄i, ȳi) =

(

xi−1 + xi

2
,
yi−1 + yi

2

)

To find the centroid of the broken line approximation we need to take the average of centroids of line
segments weighted by their length. These weighted averages of the x- and y-coordinates of midpoints are

x̄(n) :=

∑n
i=1 x̄iℓi
∑n

i=1 ℓi
and ȳ(n) :=

∑n
i=1 ȳiℓi
∑n

i=1 ℓi
,

respectively. Note that the three sums

n
∑

i=1

ℓi,

n
∑

i=1

x̄iℓi ,

n
∑

i=1

ȳiℓi

that appear in the above quotients are Riemann Sums for the functions
√

1 + [f ′(x)]2, x
√

1 + [f ′(x)]2, f(x)
√

1 + [f ′(x)]2.
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Therefore as n → ∞ we obtain the following integral formulas for the coordinates (x̄, ȳ) of the centroid

x̄ =
1

L

w b

a
x
√

1 + [f ′(x)]2 dx, ȳ =
1

L

w b

a
f(x)

√

1 + [f ′(x)]2 dx

where

L =
w b

a

√

1 + [f ′(x)]2 dx

is the arc length of the curve.
The upper-semicircle of radius R with centre at the origin is given by the graph of the function

f(x) =
√
R2 − x2, −R ≤ x ≤ R.

We have

f ′(x) =
−x√

R2 − x2
⇒

√

1 + [f ′(x)]2 =

√

1 +
x2

R2 − x2
=

R√
R2 − x2

.

The arc length of the semicircle can be computed via the trigonometric substitution x = R sin θ (giving
−π/2 ≤ θ ≤ π/2 and dx = R cos θ dθ):

L =
w b

a

√

1 + [f ′(x)]2 dx =
w R

−R

R√
R2 − x2

dx =
w π/2

−π/2

R

R cos θ
R cos θ dθ = R

w π/2

−π/2
dθ = πR.

As for the remaining integrals, we have

w b

a
x
√

1 + [f ′(x)]2 dx =
w R

−R
x

R√
R2 − x2

dx =
[

−R
√
R2 − x2

]R

−R
= 0

and
w b

a
f(x)

√

1 + [f ′(x)]2 dx =
w R

−R

√
R2 − x2

R√
R2 − x2

dx = R
w R

−R
dx = 2R2.

Thus the centroid of the semicircle is located at

(x̄, ȳ) =

(

0

πR
,
2R2

πR

)

=

(

0,
2R

π

)

.

In other words, the centroid of the semicircle is (2/π) ≈ 63.66% of the way up the radius along the y-axis.

4) Evaluate the definite integral
w 2

√
3

0

x+ 2√
4 + x2

dx.

Solution. There are several ways to evaluate this integral.
‘Method’ 1: Looking it up in tables of integrals. We can write

w 2
√
3

0

x+ 2√
4 + x2

dx =
w 2

√
3

0

x√
4 + x2

dx+
w 2

√
3

0

2√
4 + x2

dx = [
√
4 + x2]2

√
3

0 +
w 2

√
3

0

2√
4 + x2

dx

The first term evaluates to
√
16 −

√
4 = 2 whereas the second term is a special case of the following

formula [cf. Formula 25 on Reference Page 6 at the back of the Textbook]:

w du√
a2 + u2

= ln(u+
√
a2 + u2) + C.

Thus we have

w 2
√
3

0

2√
4 + x2

dx = 2
[

ln(x+
√
4 + x2)

]2
√
3

0
= 2[ln(2

√
3 + 4)− ln 2] = 2 ln(

√
3 + 2)

and the integral in question evaluates to 2 + ln(
√
3 + 2).
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Method 2: Trigonometric Substitution. The factor
√
4 + x2 in the integrand suggests that a trigono-

metric substitution should be used. Such a square root appears as the length of hypotenuse in a right
triangle with the legs having lengths of x and 2.

2

x

√
4 + x2

θ

If θ denotes the angle opposite the leg of length x, then we can express x using θ by simply using the
(right triangle) definition of the tangent function:

tan θ =
x

2
⇒ x = 2 tan θ ⇒ dx =

2

cos2 θ
dθ.

Of course, we can also express the length of the hypotenuse in terms of θ as
√
4 + x2 = 2/ cos θ. Finally,

we look at the limits of integration and see that x = 0 implies θ = 0 and x = 2
√
3 implies θ = π/3.

Thus the substitution x = 2 tan θ results in the following

w 2
√
3

0

x+ 2√
4 + x2

dx =
w π/3

0

2 tan θ + 2
2

cos θ

2

cos2 θ
dθ =

w π/3

0

2 sin θ + 2 cos θ

cos2 θ
dθ =

w π/3

0

2 sin θ

cos2 θ
dθ +

w π/3

0

2

cos θ
dθ

=

[

2

cos θ

]π/3

0

+
w π/3

0

2

cos θ
dθ = 2 +

w π/3

0

2

cos θ
dθ

As for the remaining integral, we may use the tangent half-angle substitution u = tan(θ/2) followed by
partial fractions decomposition to get

w π/3

0

2

cos θ
dθ =

w 1/
√
3

0
2
1 + u2

1− u2

2

1 + u2
du =

w 1/
√
3

0

4

1− u2
du =

w 1/
√
3

0

(

2

1− u
+

2

1 + u

)

du

= [−2 ln(1− u) + 2 ln(1 + u)]1/
√
3

0 =

[

2 ln

(

1 + u

1− u

)]1/
√
3

0

= 2 ln

(

1 + 1√
3

1− 1√
3

)

= 2 ln(2 +
√
3)

Therefore the integral in question evaluates to 2 + 2 ln(2 +
√
3).

Method 3: Hyperbolic Substitution. Inspired by the hyperbolic identity cosh2 t− sinh2 t = 1, we may
substitute x = 2 sinh t to get

w 2
√
3

0

x+ 2√
4 + x2

dx =
w arsinh

√
3

0

2 sinh t+ 2

2 cosh t
2 cosh t dt =

w arsinh
√
3

0
(2 sinh t+ 2) dt

= [2 cosh t + 2t]arsinh
√
3

0 = 2 cosh arsinh
√
3 + 2 arsinh

√
3− 2 cosh 0

= 2

√

1 + sinh2 arsinh
√
3 + 2 arsinh

√
3− 2 = 2 + 2 arsinh

√
3.

Note that the inverse hyperbolic sine function is arsinh x = ln(x +
√
x2 + 1) for all x. At x =

√
3 we

have arsinh
√
3 = ln(

√
3 + 2) confirming that the answers we got via all solution methods match.

5) To account for the seasonal variation, we may let the relative growth rate vary in the logistic differential
equation. For example, consider the equation

P ′(t) = k(t)P (t)

(

1− P (t)

M

)

with k(t) = 1 + cos t, P (0) = P0 ∈ (0,M).
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Solve the above initial value problem for P (t). What is lim
t→∞

P (t)?

Solution. The differential equation

P ′(t) = k(t)P (t)

(

1− P (t)

M

)

is separable and so we can solve it by the general method (as seen in class and in Section 9.3 of the
Textbook). Dividing both sides by P (1− P/M) followed by integration gives us

w dP

P (1− P/M)
=
w

k(t)dt

To evaluate the integral on the left-hand side, we use partial fractions and get

1

P (1− P/M)
=

M

P (M − P )
=

1

P
+

1

M − P
.

This enables us to rewrite the integral equation above as

w

(

1

P
+

1

M − P

)

dP =
w

k(t)dt

and thus
ln |P | − ln |M − P | =

w

k(t)dt.

By using the properties of logarithms and absolute value, we obtain

ln

∣

∣

∣

∣

M − P

P

∣

∣

∣

∣

= −
w

k(t)dt,

which after exponentiation turns into the following

∣

∣

∣

∣

M − P

P

∣

∣

∣

∣

= e−
r

k(t)dt,

or equivalently,
M − P

P
= ±e−

r

k(t)dt.

Solving this equation for P , we find that

P (t) =
M

1± e−
r

k(t)dt
.

In the current problem, we have k(t) = 1 + cos t and therefore

P (t) =
M

1± e−
r

(1+cos t)dt
=

M

1± e−t−sin t+C
.

At t = 0, we must have P (0) = P0 and therefore

P (0) =
M

1± eC
= P0 ⇒ ±eC =

M − P0

P0

.

Thus the solution to the initial value problem is

P (t) =
M

1 + M−P0

P0
e−t−sin t
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Since 0 < P0 < M and e−t−sin t → 0 as t → ∞, we have

lim
t→∞

P (t) = lim
t→∞

M

1 + M−P0

P0
e−t−sin t

=
M

1 + M−P0

P0
· 0 = M.

6) Solve the following initial value problem:

y′′(x) + 2y′(x) + 5y(x) = 5 + 8ex, y(0) = 3, y′(0) = 0.

[Hint: Use the method of undetermined coefficients.]

Solution. Recall that the general solution of such linear non-homogeneous second-order differential
equations can be written as

y(x) = yc(x) + yp(x),

where yc(x) is the general solution of the homogeneous equation and yp(x) is a particular solution of the
non-homogeneous equation (to be looked for via the method of undetermined coefficients). Thus we start
by solving the homogeneous equation

y′′ + 2y′ + 5y = 0.

The auxiliary equation reads
r2 + 2r + 5 = 0.

Notice that the discriminant is negative, namely b2− 4ac = 22− 4 · 5 = −16 < 0, therefore the quadratic
formula yields two complex solutions

r1,2 =
−2±

√
22 − 4 · 5
2

=
−2 ± 4i

2
⇒ r1 = −1 + 2i, r2 = −1 − 2i.

As shown in the lectures this means that the general solution of the homogeneous equation is

yc(x) = e−x(c1 cos 2x+ c2 sin 2x).

Now we turn to finding a particular solution yp(x). The right-hand side of the differential equation is a
constant plus an exponential function therefore we may use the following test function

yp(x) = A+Bex.

Note that y′p(x) = Bex and y′′p(x) = Bex, hence substituting the test function into the non-homogeneous
equation yields

(Bex) + 2(Bex) + 5(A+Bex) = 5 + 8ex.

Grouping the terms on the left-hand side leads to

5A+ 8Bex = 5 + 8ex.

This holds for all x if and only if A = B = 1. Thus we have found that

yp(x) = 1 + ex

is a particular solution of the non-homogeneous equation y′′ + 2y′ + 5y = 5 + 8ex. Adding to this the
general solution yc of the homogeneous equation produces the general solution of the non-homogeneous
equation

y(x) = e−x(c1 cos 2x+ c2 sin 2x) + 1 + ex.

To determine the values of the constants c1 and c2 we need to compute the derivative of y(x). We find
that

y′(x) = e−x([2c2 − c1] cos 2x− [2c1 + c2] sin 2x) + ex.
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Hence the initial values y(0) = 3, y′(0) = 0 impose the following constraints on c1, c2:

3 = y(0) = c1 + 2,

0 = y′(0) = 2c2 − c1 + 1.

The first equation implies that c1 = 1 which, when plugged into the second equation, yields 0 = 2c2−1+1,
thus c2 = 0. Therefore the solution of the initial value problem y′′ + 2y′ + 5y = 5 + 8ex, y(0) = 3,
y′(0) = 0 is

y(x) = 1 + ex + e−x cos 2x.
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